Key architectural improvements 1. Better programmable logic element (or CLB) More flexible on-chip memories 2. **Topic 3** Faster computation with embedded DSP blocks/Multipliers 3. Reduced routing delay and improved performance 4. **Modern FPGA Architectures** 5. Lower power Peter Cheung Department of Electrical & Electronic Engineering We will focus on: Imperial College London Altera's latest Stratix III Family Xilinx's latest Virtex 5 Family URL: www.ee.imperial.ac.uk/pcheung/ E-mail: p.cheung@imperial.ac.uk PYKC 9-Jan-08 Topic 3 Slide 1 PYKC 9-Jan-08 Topic 3 Slide 2 E3.05 Digital System Design E3.05 Digital System Design

1. Better programmable logic element (or CLB)

- For many years, all FPGAs are based around 4-LUTs (deemed to be most efficient*)
- Add block memories
- Add multipliers/DSP modules

J. Rose, R.J. Francis, D. Lewis and P. Chow, "Architecture of Field-Programmable Gate Arrays: The Effect of Logic Functionality on Area Efficiency", IEEE Journal of Solid-State Circuits, pp. 1217-1225, 1990.

FPGA's journey: from Glue Logic to SoC

FPGAs are now being used everywhere!

Topic 3 Slide 3

One LUT Size Does Not Fit All

 4-LUTs are no longer the best. Here is some results of real benchmarks showing the need for other sizes of LUTs.

Altera Patented design: Adaptive Logic Module

• First introduced in Stratix II devices - ALM has 8 inputs 2 outputs

Altera's Stratix II/III ALM (1)

- New and far more flexible Logic Element, now called Adaptive Logic Modules (ALMs)
- Each ALM contains a variety of (look-up table) LUT-based resources which can implement functions with up to 7 inputs and complex logic-arithmetic functions

Altera's Stratix II/III ALM (2)

Example	Description
4-LUT	The logic structure in Stratix II devices can implement two independent 4-input (or smaller) LUTs (4-LUT) per ALM. This configuration is "backward-compatible" and ideal for migrating a design that is optimized for traditional 4-input LUT FPGAs to the Stratix II device family.
<mark>5-LUT</mark>	Stratix II ALMs can implement a 5-input LUT (5-LUT) and a 3-input LUT (3-LUT) per ALM. The inputs to the two LUTs are independent of each other. The 3-input LUT can be used to implement any logic function that has three or fewer inputs. Therefore, a 5-input LUT and 2-input LUT are also allowed.
S-LUT	The ALMs within the Stratix II architecture can be configured to implement a 5-input LUT and a 4-input LUT per ALM. One of the inputs must be shared between the two LUTs. The 5-input LUT has up to four independent inputs. The 4-input LUT has up to three independent inputs. The sharing of inputs between LUTs is very common in FPGA designs, and Quartus [®] II software will automatically seek logic functions that are structured in this manner.
	Source:

PYKC 9-Jan-08

E3.05 Digital System Design

Topic 3 Slide 7

PYKC 9-Jan-08

Altera's Stratix II/III ALM (2)

ALM in Arithmetic Mode

 Each ALM can also be turned into TWO 3-bit, cascadable fast adders
carry in

Xilinx's Virtex-5 CLB

- Xilinx took a different approach with fixed, larger LUTs
- Each CLB has two slices
- Each slice has FOUR 6-input LUTs
- Retain fast look-ahead carry logic
- Better intra-CLB routing

Virtex-5 Slice can be configured as memory

- Two types of slices
 - SLICE_L: Logic only
 - SLICE_M: Logic / RAM / ShiftReg
- Logic-to-memory ratio optimized for area and power

PYKC 9-Jan-08

- Some CLBs with two SLICE_Ls
- Some CLBs with one SLICE_L plus one SLICE_M

Topic 3 Slide 12

PYKC 9-Jan-08

Topic 3 Slide 11

E3.05 Digital System Design

Xilinx's New 6-Input LUT with Two Outputs

Why 6-Input LUT?

- Any function of 6 variables
- No input shared with other LUTs
- Second output adds functionality
- Reduces average slice count by 10%
- 2 independent functions of 5 variables
- 1 function of 6 variables plus 1 subfunction of 5 variables
- 1 function of 3 variables plus 1 function of 2 other variables
- Plus other combinations of subfunctions...

Source: XILINX®

Topic 3 Slide 13

PYKC 9-Jan-08

٠

E3.05 Digital System Design

Examples of LUT6 Efficiency

	Virtex-4 LUTs	Virtex-5 LUTs	% Reduction
16-input MUX	8	4	50%
MicroBlaze 32x32-bit register file, 2 read ports	384	44	89%
64x16 bit RAM	64	16	75%
Ternary adder 32bis wide	64	32	50%
Opencores triple-DES decryptor	1232	834	33%
Opencores discrete cosine transform	217	186	9%
Opencores Huffman decoder	672	463	32%
Opencores Huffman encoder	270	209	23%
Opencores_VGA_LCD	1369	993	28%
16-state FSM, 4-way branch, 6 encoded outputs	-	8	-
32x32-bit Quad-Port memory (1 write + 3 read)	-	64	- Source

One LUT6 Equals 1.6 Logic Cells

- LC has become an industry standard of measuring FPGA capacity
 - 10 years ago, a LC was defined as a LUT4 plus a flip-flop
- Extensive testing with 163 benchmark designs shows that the LUT6 plus FF is equivalent to ~1.6 LCs (old 4-LUT logic cells)

PYKC 9-Jan-08

Topic 3 Slide 15

- . . Xilinx invented the LUT architecture LUT4 has been the de-facto FPGA standard since -4-input LUT Transistors got smaller LUTs became a relatively smaller part of the overall Interconnect got more significant in area and speed Time to re-evaluate the architecture Research shows that a LUT6 is optimal for 65-nm Slightly bigger LUT, compensated by significant savings through logic compaction and reduced 6-input LUT Source: XILINX Topic 3 Slide 14
- PYKC 9-Jan-08

1988

logic

routing

٠ But:

E3.05 Digital System Design

2. Flexible and more on-chip memories: Altera

- ◆ For Stratix III, 10 ALM for 1 Logic Array Block (LAB).
- ◆ 50% of LABs in a Stratix III FPGA can be converted to a memory LAB (MLAB) with 640 bit of storage.
- This can be used as dual port memory (1 Read + 1 Write port).

Xilinx: Quad-Port Memory in One SLICE M

PYKC 9-Jan-08

Xilinx has even more flexibility to turn LUT to memory

Single port

- One LUT6 = 64x1 or 32x2 RAM
- Cascadable up to 256x1 RAM in one CLB
- Dual port (D)
 - 1 read/write port + 1 read port
- Simple dual port (SDP)
 - 1 write-only port + 1 read-only port Used in LUT FIFOs, and is also key
- to Microblaze register file. Quad-port (Q)

 - 1 read/write port + 3 read-only port

Source: XILINX

Quad

Port

32x2Q

64x1Q

LUT RAM Primitives

Simple

Dual Port

32x6SDP

64x3SDP

Dual

Port

32x2D

32x4**D**

64x1D

64x2**D**

128x1D

PYKC 9-Jan-08

E3.05 Digital System Design

Single

Port

32x2

32x4

32x6

32x8

64x1

64x2

64x3

64x4

128x1

128x2

256x1

Topic 3 Slide 18

32-bit Shift Registers in 1 LUT

- Each bit uses 2 latches as master/slave
- Length is dynamically determined by the A inputs
- Cascadable up to 128x1 shift register in one CLB

Source: XILINX®

PYKC 9-Jan-08

3. Faster computation with embedded DSP blocks

Stratix II DSP Blocks

Stratix III DSP Blocks are twice the size

Xilinx's Virtex 5 DSP Block

4. Reduced routing delay and improved performance

- Altera's Stratix III Minimizing number of hops critical for:
 - Achieving high performance for faster timing closure
 - Reducing fitting congestion

Virtex-5 has More and Faster Routing Between CLBs

Xilinx's Virtex-4 routing

Result: Shorter Routing Delays

E3.05 Digital System Design

Topic 3 Slide 28

5. Lower Power – the 65nm Power Challenge

On the positive side: operating voltage (V) and node capacitance (C) decrease with process shrink, lowering Dynamic Power (CV²f)

E3.05 Digital System Design

Topic 3 Slide 29

Question: How fast should logic be?

• Only a small proportion of logic is performance critical

Programmable Power Technology

Altera's Programmable Power Technology (1)

Programmable Power Technology

Static Power Tamed (85 degree C)

Stratix III has Selectable Core Voltage

- Customer selects the FPGA core voltage
 - 1.1 V for maximum performance
 - 0.9 V for minimum power
- I/O and PLL voltages unaffected
 - Still get maximum I/O interface speed

Core Voltage	Dynamic Power Reduction From Stratix II FPGAs	Static Power Reduction From Stratix II FPGAs	Performance Gain Over Stratix II FPGAs
1.1 V	33%	52%	25%
0.9 V	55%	64%	0%

Total Power Reduction reflects reduced capacitance, Programmable Power Technology, and other Stratix III architectural optimizations

Source:

```
PYKC 9-Jan-08
```

E3.05 Digital System Design

Topic 3 Slide 34

Xilinx focus on Leakage Current at 65nm

Xilinx's way to Optimize Speed and Leakage

References & Addition Reading

- J. Rose, R.J. Francis, D. Lewis and P. Chow, "Architecture of Field-Programmable Gate Arrays: The Effect of Logic Functionality on Area Efficiency", IEEE Journal of Solid-State Circuits, pp. 1217-1225, 1990.
- Altera Stratix III information:
 - http://www.altera.com/literature/lit-stx3.jsp
- Xilinx Virtex-4 information:
 - http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
- ◆ Xilinx Virtex-5 information:-

PYKC 9-Jan-08

• http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/index.htm

E3.05 Digital System Design

Topic 3 Slide 38